金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

高一数学等差数列教学设计

来源:学大教育     时间:2014-12-08 21:35:02


数学的学习是需要学习理论和练习习题并进的,那么今天,学大教育带来了一篇叫做高一数学等差数列教学设计的文章,希望大家能够喜欢。

教学目标

1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.

(1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;

(2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;

(3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.

2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.

3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

关于的教学建议

(1)知识结构

(2)重点、难点分析

①教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

(3)教法建议

①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.

②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.

③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.

④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.

⑤有穷的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.

⑥前 项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.

⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

这篇高一数学等差数列教学设计的文章是学大教育为帮助同学们学习而编辑的,希望在以后同学们多多关注学大教育。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956